
Journal of Statistical Physics, Vol. 28, No. 3, 1982 

Asymptotic Properties of Coupled Nonlinear 
Langevin Equations in the Limit of Weak Noise. 
II: Transition to a Limit Cycle 
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We apply the singular perturbation technique, developed in the companion 
paper, to the study of the fluctuations at the onset of a limit cycle, both for the 
cases of a soft and a hard transition. The technique and results are illustrated on 
the Poincar~ model (soft transition) and on the Van der Pol oscillator (hard 
transition). 
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1, INTRODUCTION 

The asymptotic properties of coupled Langevin equations in the limit of 
weak noise can be derived by a singular perturbation technique. In a 
previous paper, we applied such an analysis mainly to the case of a cusp 
bifurcation. In this paper we are concerned with the onset of a limit cycle. 
We consider both the case of a soft transition (Hopf bifurcation) and a 
hard one (like, for instance, the Van der Pol oscillator). 

The main ideas of our approach can be summarized as follows (for a 
more detailed discussion see Ref. 1). Consider the set of Langevin equa- 
tions: 

d x el/2Fx = f ( x ,  y )  + 

d (1) 
Z y = g(~' Y) + a/:r~ 
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where F x and Fy represent Gaussian white noises, defined by 

(Fx(t)F~(t ')> = Q ~ x 6 ( t -  t') 

( Fx( t)Fy( t') > = ( Fy( t)Fx( t') ) = Q~y6( t - F) (2) 

( Fy(t)Fy(t')> = Qyj ,6( t -  t') 

The problem is to study the asymptotic behavior of the stochastic process 
(x, y) in the limit c ~ 0 .  One can show that for all finite times t: 

lim { [x(t) - 2 ( 0  [ = 0 
,~o [y(t)  - f ( t ) [  0 (3) 

with probability 1, where (x, y) obey the "macroscopic" equations: 

d ~  = f(2,  )7) 
(4) 

d 
d-7 )7 = g(2, )7) 

This result remains valid in the limit t ~ oo if there is a unique and globally 
stable macroscopic stationary state (note that this includes the case of 
marginal stability). Let (2 s, y,) be this macroscopic stationary state: 

f(s jT) = g(2,, L)  = 0 (5) 

By linearizing (2, ~) around (2,,)7~), in Eqs. (4), we obtain 

)7, g y-)7, ]  

[ Y - Ys (6) 

The asymptotic behavior of the process (x, y)  depends crucially on the 
spectral properties of the matrix L. Let k I and k 2 be its eigenvalues. In the 
neighbourhood of a cusp bifurcation, k I and k 2 are real and negative, one 
of them going to zero at the bifurcation point: 

~k I < ~k 2 ~ 0 (7) 

In this case L can always be diagonalized and hence, without loss of 
generality, one need only to consider the following equivalent problem: 

d 0 el/2 Fx ~ - ~ [ ~ ] = [ k  0' k 2 ] [ ~ ] +  [Fy]+non l inea r t e rms  (8) 



Asymptotic Properties of Langevin Equations. Ih Transition to a Limit Cycle 579 

The introduction of scaled variables (u, v), 

U = (X  - -  X s ) C - - l + a  
(9) 

v = ( . v - y s ) e  -l+b, a,b < 1 

allows to derive the asymptotic properties of the process (u, v) before, near 
and at the bifurcation point. This was accomplished in Ref. 1. 

In the case of transition to a limit cycle, the situation is entirely 
different since the two eigenvalues A 1 and X 2 are complex conjugate. The 
procedure should then be modified as follows. 

Since at the bifurcation point the real part of 2q and )t 2 vanishes, the 
matrix L possesses purely imaginary eigenvalues. Hence, one can always 
apply a linear transformation which antidiagonalizes L. Therefore, instead 
of the equations (1) one can, without loss of generality, consider the 
following problem: 

y - -  ~0 R 2 -t- e I/2 + nonlinear terms (10) 

with R~ and R 2 going to zero as the bifurcation point is approached. Note 
that in the case of a soft transition (Hopf bifurcation) we have R l --- R 2, but 
this is not necessarily the case for a hard transition (see Section 3). 

To study the process near or beyond the bifurcation, it is convenient to 
introduce polar coordinates: 

x = rcos0 (11) 

y = rs in0 

Note that the latter transformation being nonlinear, one should take into 
account the subtleties of Ito-Stratonovich calculus. (2) For the classical 
calculation rules to be valid (Stratonovich interpretation), one has to add 
the so called "spurious drift" terms in the stochastic differential equations 
(10). Alternatively, one can always perform the change of variables (11) on 
the Fokker-Planck equation equivalent to (10), following the usual rules for 
partial differential equations. In either case, one obtains 

E O,t"(r,O;t) = --Or[R2r-- r c o s 2 0 ( R 2  - R1) + ' ' "  + Qoo]P 

I - ' - ]  
- ~o -~o + sinOcosO(R 2 -  Rl) + �9 �9 r2 Qro P 

[2 2 Qro Qoo ] 
" ~rrQrr + - -  + ~2o e ( 1 2 )  + 2  2~r~ r 
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with 

Qrr = Qxx c~ + 2QxysinOcosO + Qyysin20 

Q~o = - Qxx cosOsinO + Qxy( cos20 - s in20 ) + QyysinOcosO (13) 

Qoo = Q~ sin20 - 2Q~ysin 0 cos 0 + Qyycos20 

Owing to the nonlinear change of variables, we note that the noise is now 
process dependent and, as a consequence, there is a noise-dependent term 
(proportional to e) in the "drift." As we shall see later, the latter term 
should be taken into account in order to obtain the correct form of the 
probability density. 

In the limit e ~ 0, we obtain as a consequence of (3): 

l imP(r,O; t )=  8 ( r -  ~ ( t ) )8 (O-  O(t)) (14) 
r 

where ?(t) and 0(t) are governed by the macroscopic equations [cf. Eqs. 
(4)]. Here we are interested in the approach to the stationary stae, i.e., in 
the limit t o  ~ .  It is clear that beyond the bifurcation point the angle 
variable 0(t) will be periodic for all times, but the radius ?(t) may evolve to 
a constant value ~. For instance, this is the case near a Hopf bifurcation 
point where the limit cycle is approximately circular. (3) We can thus scale 
the r variable as follows: 

r = ?~ + pe l-b, b < l  
(15) 

c > 0 

As we shall see later, the above scaling will not apply for a "hard" 
transition leading to a limit cycle, since the amplitude fluctuation appears 
to be macroscopic (see Section 3). 

Both the cases of soft and hard transitions will now be treated in detail 
with the help of explicit examples. 

2. HOPF BIFURCATION: THE POINCAR# MODEL 

Consider the set of Langevin equations 

(16) 

where F x and Fy represent Gaussian white noises defined by (2). For e = 0, 
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the set of equations (16) reduces to the so-called Poincarb model: 

The unique stationary state is given by 

~, =y, =0  (18) 

which is stable for t3 < O. At fl = O, a Hopf  bifurcation occurs. We will be 
mainly interested in the behavior of the fluctuations close to the bifurcation 
point, in the limit E ~ 0. 

In terms of the polar coordinates (11), the Fokker-Planck equation 
corresponding to (16) reads 

= -f~' ) p - O o ( - O ~ -  e Q~o) OtP(r,O;t) -Or( f i r -  r 3 + Qoo 

+ ,  ( 2 + 222 Qro + )e  -~ \O,r Qrr ,, ~o ----~-- (19) 

where the definitions (13) have been used. Clearly, in the limit e-->0, the 
probability density P(r, O; t) reduces to a Dirac 6 function centered around 
?(t) and 0(t) with [of. Eq. (14)] 

dt (20) 

dt 

if initially so. For /3 > 0, the latter set of equations admits an orbitally 
stable periodic solution of circular form with amplitude ?, = V'-fl. Following 
the discussion in the previous section, we set 

r = ~.s + p~ I-b 
(21) 

0 = 0 ,  b < l  

For fl < 0, we obtain ~ = 0 and b = 1/2. Hence the first-order correction 
to the result (14) is a bivariate Gaussian distribution, as was already 
discussed in the previous paper (l) (see also Tomita et al. (8)). 

We now consider the case fl > 0. Let us first study the close vicinity of 
the bifurcation point by setting 

/3 = tic 2~;, c > 0 (22) 

where fi is positive and independent of e. Taking into account (21) and (22) 
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we can rewrite Eq. (19) as follows: 

= _ ap I _ _ 3/ 1/202 1-b+c _ p3 2 l-b  O,~(p,O; t) 

c - 1 + 2bOo ~ ] 
+ fil/2r ] 2(0+ ) 

f _ ' + 2 Qro 1 

2 2 Qro + c-l+2b ~ooQ~ + Opo ~cb_l+ ~ 
2 ( +o) 

+ ~o2 (fil/2,b_Q~~ + 0) 2 ]~ (23) 

The problem is now to find the relevant scaling which will lead to a 
nontrivial limit of the probability density of the scaled variables. Firstly, we 
can show that necessarily b > 1/2. For this purpose, let us first consider the 
close vicinity of the bifurcation point for which the inequality c > 1 - b 
holds. Supposing b < 1/2, we obtain to dominant order in c 

~t(p 2) = e-l+2b( Qxx + Qyy) > 0 (24) 

which shows that the fluctuations of the radial variable diverge in the tong 
time limit. Hence, close to the bifurcation point, the asymptotic time regime 
should be described by a value b > 1/2. It is easy to verify on Eq. (12) 
together with (15) that this is a general result: in the close vicinity of a Hopf 
bifurcation we always find 

b > 1/2 (25) 

Using now (25) and integrating (23) over 0 we obtain 

8t~(O; t) = O(e-l+2b, E2(l-b),s (26) 

Therefore 

3tP(OIp; t) = 0-~ w~(0 [p; t) + o(1) (27) 

where ~(010; t) represents the conditional probability of 0 for a given value 
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of O. In the limit e ~ 0 the solution of (27) reads 

l imP(010; t) = 6(0 + ~0t) (28) 
r 

for all finite times, if initially so. On the other hand, it is clear that for all 
e v ~ 0, the probability density P(O, 0; t) approaches a stationary state in the 
long time limit. Therefore, taking the limit t ~ m prior to the limit e ~ 0, we 
obtain 

1 (29) lim lim 6-Y(Olo;t ) = ~in~@st(O Ip  ) - -  27r 

Integrating (23) over 0 and calculating the conditional averages using (29), 
we find 

with 

O,@(p; t) = -- Op[ -- 2flOe 2c -- 31~l/202e I -b+c _ p3e2(,-b) 

c - 1 + 2bQ ] 

+ 2(~'/2,~+c-'+ o) J ~ 

s - l + 2 b  
2 Q32~ (30) 

Q = �89 Qxx + Qyy) (31) 

The value of b follows from the requirement that drift and diffusion term 
should equally contribute to the behavior of ~(o; t) in the limit e ~ 0, and 
this whatever the value of c. Hence 

b = 3 /4  (32) 

It follows that the value 

c = 1/4 (33) 

delimitates the critical and the Gaussian regime. Taking into account (32) 
and (33) we finally obtain 

[ 
o , e ( o ; , )  = - ~ o [ - 2 ~ 0  - 3~1/202 - o '  + 

with 

T = tf.  1 / 2  

Q ] p + Q o ~ s 2  (34) 
2( ~'/2 + p) 

(35) 
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We thus obtained a one-variable problem which can be treated by the 
known classical methods (note, however, the slow time scale ~- which is 
associated to this variable). In particular, at the stationary state we find in 
terms of the original variables 

F2 /,4 
~ 

(36) 
1 

~st(0 r ) -  2~r 

Note that the crater form of the probability density has circular symmetry 
(see also Ref. 4). 

The above derivation of the stationary solution was done for 
/3~O(cl/2). However, one readily verifies that it satisfies (30) at the 
stationary state, whatever the value of/3 (i.e., c = 0). This is a consequence 
of the limit cycle for the Poincar~ model being circular. In more compli- 
cated cases, such as the Brusselator, ~5) the limit cycle is circular (to within a 
linear transformation of the variables) only for values /3~O(c 1/2) and a 
result of the type of (36) only applies for this range of the bifurcation 
parameter. Note finally that for negative values of fi, the quartic term in 
(36) is negligible and the radial distribution is Gaussian. 

3. HARD TRANSITION TO THE LIMIT CYCLE: 
THE VAN DER POL OSCILLATOR 

We consider the Van der Pol equation: 

- - 2  +/3(22 - 1 )  2 + o ~ 2 ~ = 0  (37) 
dt 2 

where/3 plays the role of the control parameter. For fi < 0, there exists a 
unique stable stationary state 2~ = 0. At/3 = 0, (37) reduces to the equation 
of the linear harmonic oscillator. For/3 > 0, a stable limit cycle is found. 
Its radius tends to the finite value 2 for fl--> + 0. Hence, there is at the 
crossing of fl = 0 an abrupt change of the stationary solution from the state 
2~ = 0 to a limit cycle behavior with finite radius 2. In order to investigate 
the effect of fluctuations, we rewrite (37) as a set of two coupled Langevin 
equations: 

d x r x 
2-i =~0y+ 

(38) 
d y = - , o x  + / 3 ( 1  - x )y + , ' /2Fy 

Note that for e = 0, (38) is equivalent to (37). Furthermore, adding a 
random force term in the right-hand side of (37), corresponds to the case 
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F x = 0. As in the previous section, we derive from (38) the corresponding 
Fokker-Planck equation in polar coordinates: 

.4- ~ Or2rQrr "b tO-'- 7 -  + O 2 P (39) 

where the definitions (13) have been used. For fl < 0, the probability 
density is Gaussian. In the limit f l - ~ - 0 ,  the process reduces to the 
stochastically driven linear harmonic oscillator for which, as well known, 
no stationary distribution exists. Henceforth, we consider explicitly the limit 
f l ~  +0, at the stationary state. As shown in the previous section, we 
cannot scale the angle variable 0 owing to its time periodic behavior. On 
the other hand, a scaling of the radial variable r, analogous to (21), proved 
also to be impossible. Nevertheless, let us investigate the vicinity of the 
transition point by setting 

fl = fie 2C (40) 

It then follows from (39) that for c > 1/2, the linear harmonic oscillator is 
recovered. At c = 1/2, the noise and the drift terms have the same order of 
magnitude. Hereafter, we will be interested only in this case. In fact, for 
c < 1/2 the system exhibits a noncircular limit cycle whose study goes 
beyond the scope of this paper. 

Following the same line as in the previous section, we verify that 

and that 

(41) 

l imP~t(Oir  ) - 1 (42) 

Inserting this result in (39) and integrating over O, we obtain to dominant 
order in e 

where we have set r - -  te and used the definition (31). At the stationary 
state, it follows 

P ~ t ( r ) ~ r e x p f  - e -L _ / 
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This solution is valid for fl~O(e). The probability density displays, in the 
limit f i ~  +0, a craterlike form with radius 2. This behavior is to be 
distinguished from that obtained for the Poincar6 model where the radius 
of the probability crater goes to zero as/31/2. Moreover, it is clear that the 
result (44) applies only for positive values of /3, while for the Poincar6 
model the solution (36) is valid for all values of ft. 

Note finally that the fluctuations for the r variable are of the order 
O(1). This result shows that, sufficiently close to the transition point, the 
fluctuations remain macroscopically large, even in the weak noise limit 
E~0.  This is not surprising since for the stochastically driven linear 
harmonic oscillator, to which the system reduces near the transition point 
(c > 1/2), the amplitude fluctuations become infinitely large in the long 
time limit t ~ oo. 

4. C O N C L U S I O N S  

In this and the previous paper, we have introduced a method which 
allows to solve coupled Langevin equations in the limit of weak noise. The 
introduction of appropriately scaled variables and parameters, and the 
evaluation of the orders of magnitude of the different terms in the corre- 
sponding Fokker-Planck equation, leads to an asymptotic solution of the 
problem. We have been concerned primarily with the long time limit, 
describing the approach of the stationary state, in the close vicinity of the 
bifurcation point. A diversity of behavior was found according to the type 
of bifurcation (cusp, Hopf, or hard transition) and the specific nonlinearity 
of the system. On the other hand, a general treatment of the fluctuations in 
the range of multiple macroscopic steady state has not been achieved with 
our approach. 

Throughout these papers, we considered Langevin equations with 
process independent noise. A more fundamental description of internal 
thermodynamic fluctuations is provided by the "master equation." It has 
the advantage of describing simultaneously the macroscopic dynamics and 
the corresponding fluctuations coming from the discrete character of the 
underlying microscopic processes. It has been shown that these two ap- 
proaches are equivalent in the thermodynamic limit, provided that the 
macroscopic steady state is unique and globally stable. (6) On the other 
hand, the status of a Langevin type of approach, for internal thermody- 
namic fluctuations, beyond the bifurcation point remains an open question. 

So far, we considered only homogeneous systems, disregarding spatial 
fluctuations. The latter can, however, be crucial, for instance, for the 
formation of inhomogeneous macroscopic steady states (cf. reaction- 
diffusion system). Another important question in this respect is the role of 
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inhomogeneous fluctuations in the emergence of coherent temporal struc- 
tures (chemical clocks). It is clear that in these problems the dimensionality 
of the system will play an important role. (7) We will come back to these 
problems in a future publication. 
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